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What Adverbials & Adverbial Clauses May Teach Us 
about Quantification  
Richard Larson (Stony Brook University) 
 
 
Boolos (1981) observes quantifications like (1a), with the general form (1b). 
 
(1) a. For every drop of rain that falls, a flower grows. 
 b. For every A, there is a B 
 
B notes the 1st order representation for (1a) in (2a) is inadequate, being equivalent 
to (2b), which is too weak. (1a) requires branching quantifiers, or a 2nd order 
representation like (2b) (adapted from Rothstein 1995) w/existential quantification 
over injections !. 
 
(2) a. ∀x[raindrop(x) & falls(x) → ∃y[flower(y) & grows(y)]] 
 b. ∃x[raindrop(x) & falls(x)] → ∃y[flower(y) & grows(y)] 
 c. ∃!∀x[raindrop(x) & falls(x) → ∃y[flower(y) & grows(y) & y = !(x)]]	
 
An injection is a function mapping each element of its domain to a unique image in 
its co-domain. Wrt (1a), ! maps each raindrop (ri) to a unique flower (fi), in effect, 
matching the first with the second (3). 
 
(3) DOM(raindrops) CO-DOM(flowers) 

r1    f1 = !(r1) 
r2    f2 = !(r2) 
r3    f3 = !(r3) 
	⫶      ⫶ 
rn    fn = !(rn) 
    fn+1 
      ⫶ 

Since (3) allows for items in the co-domain (e.g., fn+1) that aren’t the image of any 
element in the domain, (2c) correctly captures the core assertion of (1ab	
	
	 Rothstein (1995) proposes that adverbial quantifications like (4a-d) have a 
logical status parallel to (1a-b). 	
 
(4) a. Every time Mary phones, John answers. 
 b. I met a friend every time I went to the bakery. 
 c. Every time I pay a phone bill, I lose the receipt later. 
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 d. Mary complains about it every time she takes a math exam. 
 
R argues convincingly that the truth conditions of (4a-d) involve matching events 
quantified over by the universal adverb with events described by the matrix clause. 
Adapting (2c), (4a) can be represented as in (5a), with “matching” as in (5b): 
 
(5) a. ∃!∀e[phoning(e) & AGENT(e) = Mary →  
  ∃e’[answering(e’) & AGENT(e’) = John & e’ = !(e)]]    (where ! is an injection) 
 b. DOM(phonings)  CO-DOM(answerings) 

e1      e’1 = !(e1) 
e2      e’2 = !(e2)  
e3      e’3 = !(e3) 
 ⫶       ⫶ 
en      e’n = !(en) 
      e’n+1 
       ⫶	

Matching is part of the semantic structure of (4a-d) and not pragmatic, as R shows. 
 
Key Question 1:  Where does the “matching function” ! come from in (1a)/(4a-d)? 
What contributes it to semantic composition? 
 
In this talk, I pursue this simple question to some exotic conclusions.  
 
Outline: 
■ In Section 1, I review Rothstein’s answer to the KQ1 and some concerns about 

it. I sketch an alternative, quite different answer. 
■ In Section 2, I argue that quantifications express states; i.e., quantifications 

introduce their own Davidsonian eventuality variables.  
■ In Section 3, I explore the idea of neo-Davidsonianizing quantificational states. I 

suggest the matching function is a thematic role in neo-Davidsonianized 
quantification resembling the Theme role of Krifka (1993,1999). 

 

1.0 Whence the Matching Function? 
1.1 Rothstein (1995) 
Rothstein (1995) doesn’t assign to (6a) the representation in (6b) (where ! is an 
injection), but rather the alternative in (6c).  
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(6) a. Every time Mary phones, John answers. 
 b. ∃!∀e[phoning(e) & AGENT(e) = Mary → ∃e’[answering(e’) & 	
  AGENT(e’) = John & e’ = !(e) ]]    
 c. ∀e[phoning(e) & AGENT(e) = Mary → ∃e’[answering(e’) &  
  AGENT(e’) = John & M(e’) = e ]] 
 
Here M is a contextually understood function from events to events. But:  
• Instead of being a total function from phonings (e) to answerings (e’),  

M is a partial function from answerings (e’) to phonings (e). 
• In addition to being injective, M is onto (7).  
 
(7) CO-DOM(phonings)  DOM(answerings) 

e1 = M(e1)    e’1  
e2 = M(e2)    e’2  
e3 = M(e3)    e’3  

   ⫶        ⫶ 
en = M (en)    e’n  

         e’n+1 
          ⫶	
These assumptions correctly entail there to be at least as many answerings as 
phonings. But the analysis is peculiar in reversing the intuitive direction of mapping.  
Why does R do this?  
 
R’s Answer to KQ1: The pairing function is contributed by a prepositional  
       element in the main clause. 
 
(8) Every time Mary phones, John answers. 

    
 
∀e[phoning(e) & AGENT(e) = Mary → ∃e’[answering(e’) & AGENT(e’) = John & M(e’) = e]] 
 
(9) a. every time Mary phones ⟹ λP∀e[phoning(e) & AGENT(e) = Mary → P(e)] 
 b. John answers ⟹ λei∃e’[answering(e’) & AGENT(e’) = John & M(e’) = ei] 

IP
NP

every time Mary phones
i IP

NP
John

I'
VP

V'
answers

PP
P NP
∅ t i

I
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(10) a. John flew his space ship to the Evening Star. 
 b. ∃e[flying(e) & AGENT(e) = John & THEME(e) = his spaceship & TO(e) = 
       the Evening Star] 
 
Concerns About R’s Analysis: 
i. How do we extend R’s account to (1a)?  For (≈ M) is syntactlcally/semantically 

unassociated with the indefinite subject (a flower), whether pied-piped (11a) or 
LF-reconstructed (11b).  How can for end up pairing flowers with rain drops?? 

 
(11) a. [PP For every drop of rain that falls] [a flower grows [PP __ ]. 
 b. [NP Every drop of rain that falls], [a flower grows [PP for __ ]. 
 
ii. How do we analyze adverbials not involving a P? (12a) seems   
 semantically identical to (2a), but [P ∅] is not motivated here (12b). 
 
(12) a. Always if/when Mary phones, John answers. 
 b. Always if/when Mary phones [ John answers [PP ∅ t ] ]. ??? 
 
iii. Taking Ps & θ-roles as functions from events to individuals is questionable; it 

requires counter-compositional functions, where the object of P/θ is not its first 
argument (13a-c). A parallel analysis of M is correspondingly dubious. 

 
(13) a. λyλx[R(y)(x)] 
 b. λxλe[TO(e)= x] 
 c. λxλe[AGENT(e) = x] 
 
 
1.2 An Alternative  
I suggest a different analysis based on a different answer to our key question about 
semantic composition. 
 
My Answer to KQ1:  The pairing function is contributed by the quantifier itself. 
 
(14) Every time Mary phones, John answers 

       
∃"∀e[phoning(e) & AGENT(e) = Mary → ∃e’[  answering(e’) & AGENT(e’) = John  & e’ = "(e)]]	

IP
NP

every time Mary phones
IP

NP
John

I'
VP
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(15) a. every   ⟹  λQλP∀x[Q(x) → P(x)] 
 b. (for) every ⟹  λQλP∃!∀x[Q(x) → ∃y[P(y) & y = !(x)]] 
 
(16) a. every time Mary phones   ⟹  
  λP∃!∀x[phoning(x) & AGENT(x) = Mary → ∃y[P(y) & y = !(x)]] 
 b. John answers   ⟹   λz[answering(z) & AGENT(z) = John] 
 
Discusssion: 
i. Although distinct, (15a-b) are closely related; (15b) entails (15a) when " is the  
 identity function (i.e., when "(x) = x):  
 
(17) λQλP∀x[Q(x) → ∃y[P(y) & y = x ]]  ⊨  λQλP∀x[Q(x) → P(x)] 
 

(15b) can therefore be viewed as the “generalized universal” of which the 
“classical universal” (15a) is a special case. 

 
 Generalized Universal: “There are at least as many Ps as Qs.” 
 Classical Universal:      “There are at least as many Ps as Qs that are also Ps.” 
 
ii. The nominal & adverbial domain exhibit both kinds of quantification. Boolos 

examples like (1a) show the generalized universal in the nominal domain. (18a-
b) (from Rothstein 1995) show the classical universal in the adverbial domain: 

 
(18) a. Every time Mary sees a horror movie, she sees it with John. 
 b. Every time I drink whisky, I drink Laphroaig. 
 
iii. The domain/co-domain of ! can be different; !: things → events (19a), and  
 !: events → things (19b). The variables in (15b) must therefore be understood  
 as unsorted. 
 
(19) a. For every “A” Mary gets on her report card, John donates $5 to charity. 
  (grades → donation events) 
  b. Every time Mary steps, there is a foot print. 
  (stepping events → foot prints) 
  
RE: Concerns w/ Rothstein (1995) 
i. The quantifier analysis generalizes directly to Boolos cases like (1a).   
 
(20) a. for every raindrop that falls ⟹  
  λP∃!∀x[raindrop(x) & falls(x) → ∃y[P(y) & y = !(x)]] 
 b. a flower grows ⟹    
  λz[flower(z) & grows(z)] 
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ii. The quantifier analysis extends directly to always (21). 
 
(21) Always ⟹    λQλP∃!∀e[Q(e) → ∃e’[P(e’) & y = !(e’)]] 
 
iii. The quantifier analysis doesn’t locate the matching function (!) in a P.  
 
Key Question 2:  Why is there an injection inside the interpretation of quantifiers?  
 

2.0 Quantificational States   
Davidson (1967a) suggests the semantics of Vs should go from (22a) → (22b). 
Similarly (in principle) for relational As (23a-b), Ps (24a-b) & Ns (25a-b). 
 
(22) Shem kicked Shaun.     (23) Shem is envious of Shaun. 
 a. kick( x, y )         a. envious-of( x, y )  
 b. kick( x, y, e)         b. envious-of( x, y, e ) 
 
(24) Shem is near Shaun.     (25) Shem is a relative of Shaun.   
 a. near( x, y )         a. relative-of( x, y ) 
 b. near( x, y, e )         b. relative-of( x, y, e ) 
 
Consider now quantifiers, widely taken to express relations between properties 
(26a)/(27a). Are eventuality variables motivated here too (26b)/(27b)?  
 
(26) All men complain.       (27) Men always complain. 
 a.  ALL( P , Q )         a.  ALWAYS( P , Q )  
 b. ALL( P , Q, e )         b. ALWAYS( P , Q, e ) 
 
In fact, we can find motivation for this move in constructions that express relations to 
eventualities: causatives, perception verbs and adverbial quantifiers. 
 
2.1 Causing Quantificational States 
Davidson (1967b) proposes that causation is a relation between eventualities (28) 
(which include both events and states). (29) illustrates the idea concretely. 
 
(28)  CAUSE( e , e’ ) 
 
(29) a. John’s sneezing made Mary leave. 
 b. John’s sneezing ⇒  ιe[sneeze(John,e)] 
 c. Mary leave    ⇒  ∃e’[leave(Mary,e’)] 
 d. John’s sneezing made Mary leave ⇒  
  ∃e’[leave(Mary,e’) & CAUSE( ιe[sneeze(John,e)] , e’ )] 
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Accepting this, reference to Q-states seems motivated. Consider (30-31) from 
Johnston (1994): 
 
(30) a. Leopold always robs a bank because he needs money fast. 
 b. Frankie always misses the bus because he is a slow runner. 
  (cf. Because he is a slow runner Frankie always misses the bus.) 
 
(31) John always sold shares because he needed the money.  
 a. ‘Each event of John’s selling shares was caused by a state of John’s 

needing money’ 
 b. ‘John’s need for money caused a certain behavioral pattern, viz.: John’s 

always selling shares.’ 
  (cf. Because he needed the money John always sold shares.) 
 
In (30a)/(31a) individual states cause individual events. But (30b)/(31b), a state 
causes a “quantificational pattern”. Consider also (32): 
 
(32) a. [a dog’s biting him in childhood] made  
  [John always become nervous when a dog was near him].  
 b. [Fido’s conditioning] caused his salivating. 
 
Always binds all events variables in its scope. Hence without a state corresponding 
to always itself, CAUSE will have no second event to relate to (33). We appear to 
need something like (34):  
              ⬇   
(33) CAUSE( ιe[a-dog’s-biting-John(e)] , ?? )  
 ALWAYS( {e”: John-become-nervous(e”)} , {e*: a-dog-near-John(e*)} ) 
 
(34) ∃e [ CAUSE( ιe [a-dog’s-biting-John(e)] , e ) &               ⬇ 
 ALWAYS( {e”: John-become-nervous(e”)} , {e*: a-dog-near-John(e*)} , e ) 
 
2.2 Perceiving Quantificational States 
Higginbotham (1983) and Vlach (1983) argue that perception is a relation between 
individuals (x,y) (35), where the latter (y) can be an eventuality (36).  
 
(35)  SEE/HEAR( x , y , e ) 
 
(36) a. John heard Mary leave. 
 b. Mary leave.      ⇒  ∃e’ [leave(Mary,e’)] 
 d. John heard Mary leave ⇒  ∃e∃e’[leave(Mary,e’) & HEAR( John, e’ , e)] 
 
Again, accepting this, reference to Q-states seems natural. Consider (37a,b). 
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(37) a. John heard Mary frequently complain about her job. 
  (≠ John frequently heard Mary complain about her job.) 
 b. John saw Mary often leave before 5:00pm. 
  (≠ John often saw Mary leave before 5:00pm.) 
 
In both John sees/hears, not specific events, but instead a regular pattern of 
behavior on Mary’s part - a state.  
 
Frequently binds all events variables in its scope. Thus without a state 
corresponding to frequently itself, HEAR has no second event to relate to (38). We 
appear to need something like (39):  
         ⬇   
(38) ∃e’ [ HEAR( John , ?? , e’ ) & 
 FREQ( {e”: Mary-complain-about-job(e”)} , {e*: C(e*)} )    
 
(39) ∃e ∃e’ [ HEAR( John , e , e’ ) &                  ⬇ 
 FREQ( {e”: Mary-complain-about-job(e”)} , {e*: C(e*)},  e  ) 
 
2.3 Quantifying Over Quantificational States 
Adverbial quantifiers quantify over eventualities (Rothstein 1995; Herburger 2000). 
In GQ terms, this means relating sets (40)/(41a-b). 
 
(40) ALWAYS( {e: P(e)} , {e*: Q(e*)} ) 
 
(41) a. John always eats in the hotel restaurant. 
 b. ALWAYS( {e: John-eats-in-HR(e)} , {e*: C(e*)} ) 
 
Assuming this is correct, consider sentences involving multiple adverbial Qs (42a,b). 
 
(42) a. Usually (when he is staying at the Four Seasons)  
  John always eats in the hotel restaurant. 
 b. Often (when he in feeling down) 
  John will frequently visit a casino./John will frequent casinos. 
 
In both we seem to say of a certain behavioral pattern on John’s part – his always 
eating somewhere, his frequently visiting something, etc. – that it’s attested with a 
certain frequency – that it is usual in certain circumstances, that it is frequent, etc. 
 
Always binds all eventuality variables in its scope. Hence without a state 
corresponding to always itself, binding by e† in the first arg of usually is vacuous 
(43). We appear to need something like (44):  
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(43) USUALLY( 
 { e†: ALWAYS( {e: John-eats-in-HR(e)} , {e*: C(e*)})} , { e‡: John-stay-at-4S(e‡)}  ) 
 
                   e† ?? 
(44)  USUALLY(                ⬇ 
 { e†: ALWAYS( {e: John-eats-in-HR(e)} , {e*: C(e*)},  e† )}, 
                     { e‡: John-stay-at-4S(e‡)} , e* ) 
 
3.0 Neo-Davidsonian Quantificational States   
 
Neo-Davidsonians take the semantics of Vs further, from (45a) → (45b). Similarly (in 
principle) for relational As (27a-b), Ps (28a-b) and Ns (29a-b). 
 
(45) Shem kicked Shaun.     (46) Shem is envious of Shaun.  
 a. kick( x, y, e)         a. envious-of( x, y, e ) 
 b. kicking(e) & θ1(e, x) & θ2(e, y)   b. envy(e) & θ1(e, x) & θ2(e, y) 
         “ARGUMENT SEPARATION” 

(47) Shem is near Shaun.     (48) Shem is a relative of Shaun.   
 a. near ( x, y, e )         a. relative-of( x, y, e ) 
 b. proximity(e) & θ1(e, x) & θ2(e, y)  b. kinship(e) & θ1(e, x) & θ2(e, y)  
 
If event variables are indeed motivated with quantifiers (49a)/(50a), is argument 
separation possible here as well (49b)/(50b)? 
 
(49) All men complain.       (50) Men always complain. 
 a. ALL( P , Q, e )        a. ALWAYS( P , Q, e ) 
 b. All(e) & θ1(e, P) & θ2(e, Q)    b. All (e) & θ1(e, P) & θ2(e, Q) 
 
Problem: Qs express pure relations between sets of individuals:  
   cardinalities, proportions, etc. (51a) 
   What happens to this relation with a state interposed (51b)?  
 
(51) a. ALL( P , Q )       b.  θ1(e, P) & θ2(e, Q) 
   P   Q       P           Q 
   a          a 
   b          b 
   c   c       c             c 
   d   ⊇	 d       d  ←θ1® e ←θ2®   d 
   f   f       f  ?       ?      f 
 
It’s here that “matching" quantification guides us. 
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(52) a. Everyone who sneezed left. 
 b. Every time John sneezes, Mary leaves. 
 
(53) a. {y: sneezes (y)} ⊇	{x: left(x)} 
 b. {e: leaving(e) & Ag(e,m)} ⊇	{e’: sneezing(e) & Ag(e,j)} X 
 
Davidsonian events are thematically unique; a given event can have at most one 
agent, theme, goal, etc.  This means no event of Mary leaving can also be an event 
of John’s sneezing. The first set cannot contain the second.  
 
This result is general for adverbial Qs understood as quantifying over events. 
 
(54) a. If it snows, Mary usually stays inside. 
 b. MOST(P,Q)  iff  | Q Ç P | > | Q - P | 
 c. | {e: Snowing(e)} Ç {e’: Stay-inside(e’) & Th(e’,m)} |	>	
  | {e: Snowing(e)} − {e’: Stay-inside(e’) & Th(e’,m)} |		 X	
 
How is this point accommodated?   
 
(55)  MOST( P , Q )     
 a.  P   Q        b.       P       Q 
      e’1           e’1 
      e’2           e’2      
      e’3      e’3        e’3 = ƒ(e1)  ← ƒ ←  e1   
      e’4   X	    e’4        e’4 = ƒ(e2)  ← ƒ ← e2 
      e’5      e’5        e’5 = ƒ(e2)  ← ƒ ← e2 
  
(56) a. ‘The image under ƒ of the snowing events (Q) in the staying-inside  
  events (P) is larger than its complement in the staying-inside events.’ 
 b. | ƒ({e: Snowing(e)}) |	>	
  | {e’: Stay-inside(e’) & Th(e’,m)} − ƒ({e: Snowing(e)}) |     
 
Adverbial Qs thus typically present a situation opposite to nominal Qs: we precisely 
can’t compare sets Q and P directly. Comparison of P is to a subset ƒ(Q) that is the 
injective image of Q. 
 
3.1 Executing Argument Separation 
Comparing images suggests a way of neo-Davidsonianizing quantifiers, as a 
generalization of (55b).  
 
 

{ 
 

{ 
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Idea1: Quantificational eventualities represent a uniform codomain where quantifies 
of (possibly different) kinds of objects are compared via their images under 
injections. Quantificational e = a common “image space”. 

   
Idea2: Quantificational θ-roles represent different injections to the eventuality image 

space.    
 
(55)  Combining Q (the restriction): ƒ is an injection   

e         Q 
            e1 
            e2      
            e3 = ƒ(α)  ←  ƒ  ←     α   
            e4 = ƒ(β)  ←  ƒ  ←     β 
            e5 = ƒ(γ)  ←  ƒ  ←     γ 
  
(56)  Combining P (the scope) : + is an injection st CO-DOM(ƒ) ⊇ CO-DOM(+)	

P         e       Q 
           e1 
    a →  +  →  +(a) = e2      
    b →  +  →  +(b) = e3  = ƒ(α)  ←  ƒ  ←     α   
    c →  +  →  +(c) = e4  = ƒ(β)  ←  ƒ  ←     β 
    d →  +  →  +(d) = e5  = ƒ(γ)  ←  ƒ  ←     γ 
 
Idea3: Quantificational states hold in virtue of the relations among the ƒ & + 

images.  
 
(57) a. every/always(e) &  +(P,e) & ƒ(Q,e) iff |ƒ(Q) −	+(P)| = 0 
 b. some(e)     &  +(P,e) & ƒ(Q,e) iff |ƒ(Q) ∩	+(P)| ≠ 0 
 c. no(e)      &  +(P,e) & ƒ(Q,e) iff |ƒ(Q) ∩	+(P)| = 0	
 d. most(e)     &  +(P,e) & ƒ(Q,e) iff |ƒ(Q) ∩	+(P)| > |ƒ(Q) −	+(P)| 
 
“Classical quantification” on our earlier matching view: the matching function ƒ is the 
identity function (ƒ(x) = x; recall 17)  
 
“Classical quantification” on the neo-Davidsonianized view: the composed function 
+-1 ◦ƒ is the identity function (+-1(ƒ(x)) = x).  
 
3.2 A Surprisingly Familiar Picture! 
Neo-Davidsonianized quantifers resemble neo-Davidsonianized verb sets in which 
the roles are the same, but the action is different (58a-d): 
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(58) a. hitting(e)  & Agent(x,e) & Patient(y,e) 
 b. slapping(e) & Agent(x,e) & Patient(y,e) 
 c. tapping(e) & Agent(x,e) & Patient(y,e) 
 d. patting(e) & Agent(x,e) & Patient(y,e) 
 
Likewise in (57a-d), the roles (ƒ, +) are the same, but the Q-state is different. 
 
Krifka’s (1989, 1992, 1999) analysis of telicity: θTHEME homomorphically injects the 
the mereological structure of the object into the verbal event. In (59a), a glass of 
wine is injected into a drinking event e (59b). 
 
(59) a. Hans drank a glass of wine. 
 b.  e     ƒ 
   e1    
   e2 
   e3 
   e4 

   e5 

   e5 
 
 
 
 
Boundness/quantization in wine creates a bounded/quantized image in drinking, 
which becomes accessible to measure adverbs like in an hour). Krifka’s 
incremental theme θ-relation looks very like a version of ƒ. 
 
Davidson (1967a) argues that a great many sentences are underlying event 
quantifications. It thus would be unsurprising to find that the event analysis of 
quantifiers underlies the event analysis of familiar, verbal predication. 
 
4.0  Wrapping Up  
■ Some nominal quantifications & typical examples of adverbial quantification 

appear to involve pairing/matching elements of one set with those of another.    
■ Matching is part of the semantic structure of the quantifier in those cases. 
■ Matching quantifiers are generalized versions of classical quantifiers. 
■ Quantifiers appear to introduce quantificational states, which can be caused, 

perceived & quantified-over.  
■ A neo-Davidsonianization of quantifiers/quantificational states suggests an 

answer to where “matching” comes from & why it represents the general case in 
quantification. 

■ The resulting picture of quantifiers appears to be a natural one in various 
respects. 


